35.2 Defenses Against Infection

Lesson Objectives

- Describe the body’s nonspecific defenses against invading pathogens.
- Describe the function of the immune system’s specific defenses.
- List the body’s specific defenses against pathogens.

Lesson Summary

Nonspecific Defenses The body has many nonspecific defenses, which defend against a wide range of pathogens.

- The first line of defense is skin. Skin keeps pathogens out of the body by forming a barrier that few pathogens can get through. Mucus, saliva, and tears contain an enzyme that can kill bacteria. Mucus can also trap pathogens.

- When pathogens do enter the body, the second line of defense goes to work. These nonspecific defenses include:
 - the **inflammatory response**, in which chemicals called **histamines** cause blood vessels near a wound to expand and phagocytes to move into the tissue to fight infection.
 - the production of proteins called **interferons**, which help block the replication of viruses.
 - the release of chemicals that produce a **fever**, an increase in normal body temperature, which may slow the growth of pathogens and speed up immune response.

Specific Defenses: The Immune System The function of the immune system is to fight infection by inactivating foreign substances or cells that have entered the body. The specific immune response works in several ways, including:

- recognizing “self,” including cells and proteins that belong to the body.
- recognizing “nonself”, or **antigens**, molecules found on foreign substances. Antigens stimulate the immune system to produce cells called lymphocytes that recognize, attack, destroy, and “remember” specific pathogens.
- producing specific lymphocytes that recognize specific antigens. They work by attacking infected cells or producing **antibodies**, proteins which tag antigens for destruction by immune cells.

The Immune System in Action The immune response works in two ways.

- In **humoral immunity**, white blood cells, called B lymphocytes (B cells), make antibodies that attack pathogens in the blood.
- In **cell-mediated immunity** white blood cells, called T lymphocytes (T cells), find and destroy abnormal or infected cells.

After a pathogen is destroyed, memory B cells and memory T cells stay in the body. These cells help create a faster immune response if the same pathogen enters the body again.
Nonspecific Defenses

For Questions 1–8, write the letter of the definition that best matches each term.

Term Definition
______ 1. skin A. An increase in body temperature, which slows or stops pathogens
______ 2. lysozyme B. A secretion of the nose and throat that traps pathogens
______ 3. inflammatory response C. An enzyme found in tears and saliva that breaks down bacterial cell walls
______ 4. histamines D. Chemicals that increase blood flow to tissues
______ 5. interferons E. Combination of physical and chemical barriers that defend against pathogens
______ 6. fever F. Redness, pain, and swelling at the site of an injury
______ 7. mucus G. Proteins that fight viral growth
______ 8. nonspecific defenses H. The body’s most important nonspecific defense

Specific Defenses: The Immune System

For Questions 9–14, complete each statement by writing the correct word or words.

9. The ____________ response is the body’s response to specific invaders.

10. A substance that triggers the immune response is known as a (n) ____________.

11. The main role of ____________ is to tag ____________ for destruction by immune-system cells.

12. The main working cells of the immune system are two types of ____________. Their specific types are determined by a person’s ____________.

13. ____________ discover antigens in body fluids.

14. ____________ defend the body against pathogens that have infected body cells.

15. THINK VISUALLY In the space provided, draw an example of each type of lymphocyte indicated to show a basic difference between the two types of cells.

B Cell

T Cell
The Immune System in Action

For Questions 16–22, write True or False on the line provided.

16. Humoral immunity is a response to pathogens in blood and lymph. True
17. The first response of humoral immunity to infection is much faster than the second response. True
18. Plasma cells are specialized B cells. True
19. Cell-mediated immunity involves antibodies. False
20. Cell-mediated immunity causes infected body cells to die. True
21. Cell-mediated immunity only works on viral diseases. False
22. Cytotoxic T cells are a cause of rejection of transplanted organs. True

23. Complete the table to compare how humoral and cell-mediated immunity work after a virus invades the body for the first and second times.

<table>
<thead>
<tr>
<th>Humoral Immunity vs. Cell-Mediated Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action of Humoral Immunity</td>
</tr>
<tr>
<td>Primary response:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Activated B cells grow and divide rapidly.</td>
</tr>
<tr>
<td>Plasma cells release antibodies that capture antigens and mark them for destruction.</td>
</tr>
<tr>
<td>Secondary response:</td>
</tr>
</tbody>
</table>

24. A runny nose is a symptom of a cold. How is this evidence that the body’s immune defenses are working? A runny nose is a symptom of a cold, indicating an immune response to the virus.